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Population geneticists increasingly confront a paradox: even with genome-scale
datasets and advanced machine learning models, subtle population structure
often remains undetected, particularly in systems with low diversity, high
dispersal, or recent divergence. This Opinion article argues that quantum
computing and quantum machine learning (QML) offer a fundamentally
different computational paradigm that may overcome these limitations. By
leveraging principles such as superposition, entanglement, and high-
dimensional Hilbert space embeddings, quantum systems can represent and
analyze complex genetic relationships in ways that classical tools cannot. I outline
how QML approaches such as quantum support vector machines, clustering
algorithms, and optimization frameworks can be applied to detect cryptic
population structure, optimize model selection, and reveal hidden patterns in
genomic data. I also propose a conceptual pipeline for integrating quantum tools
into molecular ecology and offer a roadmap for interdisciplinary collaboration. As
quantum computing advances rapidly across the sciences, now is the time for
evolutionary biologists and ecologists to engage with this emerging frontier.
Quantum approaches may not only increase computational power, but also shift
howwe interrogate biological data, and reframe our understanding of population
structure and diversity.
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1 Introduction

Despite the explosion of genomic data in recent decades, population geneticists still
struggle to detect structure in certain systems. Early analyses using mitochondrial DNA and
Sanger-sequenced loci offered coarse insights into divergence and connectivity (Avise et al.,
1987; Avise, 1991; Zhang and Hewitt, 2003; Avise et al., 2009), but many studies,
particularly on high-dispersal taxa, returned “flat” results interpreted as panmixia. The
rise of genome-wide approaches like RAD-seq and the integration of machine learning
(ML) promised greater resolution by increasing marker density and computational power
(Davey and Blaxter, 2010; Lowry et al., 2016; Hodel et al., 2017; Li and Ralph, 2019; Andrews
et al., 2016). Yet in many cases, even thousands of SNPs and advanced clustering algorithms
fail to reveal meaningful patterns (Meirmans, 2015; David, 2018; Hohenlohe et al., 2020).
This persistent opacity raises a key question: is the problem in the data, or in the tools we use
to analyze it? Many conventional methods reduce high-dimensional genetic data into linear
projections or simplified models, potentially discarding subtle, nonlinear signals of
structure. While ML approaches such as random forests or neural networks have
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improved detection in some cases, they too rely on classical
assumptions, feature engineering, and dimensionality reduction
that may miss complex relationships.

Quantum computing offers a fundamentally different
paradigm—one that may open new doors for detecting structure
in noisy, weakly differentiated, or cryptically admixed populations.
In this article, I argue for integrating quantum machine learning
(QML) into population genetics, outlining how quantum tools
might expose hidden diversity where classical methods plateau.

2 Current bottlenecks in
population genetics

Even with genome-scale data, molecular ecologists continue to
face challenges in inferring population structure, especially in taxa
with high dispersal, low diversity, or recent divergence. Classical
methods such as FST, PCA, STRUCTURE, and AMOVA often fail
to resolve differentiation in these systems, producing ambiguous
results even when ecological or biogeographic barriers suggest
otherwise (Lowe and Allendorf, 2010; Kelly and Palumbi, 2010;
David and Loveday, 2018). Genomic approaches like RAD-seq, and
the use of thousands of SNPs, were expected to overcome these
issues. Machine learning methods—support vector machines,
random forests, deep learning—have pushed the field further,
especially in identifying subtle structure and loci under selection
(Schrider and Kern, 2018; Sheehan and Song, 2016). However, these
approaches still rely on classical computation and statistical
frameworks. They require extensive training data, are sensitive to
noise and missing data, and often project information into lower-
dimensional spaces for tractability. Critically, they may overlook
nonlinear relationships among loci, or signals obscured by
admixture, gene flow, or founder effects. In invasive species, for
instance, repeated introductions and high admixture often create
complex patterns that defy clean clustering (see Huang et al., 2024).
Even in well-sampled, high-resolution datasets, structure may
remain “hidden.” not because it doesn’t exist, but because our
tools aren’t built to find it.

The core issue isn’t always data quantity. It is representational
capacity. When we compress complex genetic variation into classical
spaces, we risk losing the very patterns we seek. A new
computational paradigm may be required, one capable of
handling high-dimensional, nonlinear, and noisy biological data
in fundamentally different ways.

3 Quantum computing basics

Quantum computing departs fundamentally from classical
computation. Instead of binary bits (0 or 1), quantum computers
use qubits, units that exist in superposition, capable of being 0 and
1 simultaneously. This allows quantum systems to explore multiple
states at once, vastly expanding the space of possible solutions.
Qubits can also become entangled, meaning the state of one qubit is
intrinsically linked to another, regardless of distance. Together,
superposition and entanglement enable quantum systems to
operate in exponentially larger, high-dimensional spaces known
as Hilbert spaces. This makes quantum algorithms particularly

powerful for pattern recognition, optimization, and classification
in complex datasets.

Two concepts are especially relevant to population genetics.
First, quantum feature mapping allows classical data, such as SNP
genotypes or haplotype frequencies, to be embedded into quantum
state space, potentially making weak or nonlinear patterns more
separable. Second, quantum machine learning (QML) models, such
as quantum support vector machines (QSVMs) and quantum
k-means, can operate in these spaces to detect structure that
classical models might miss. While still in early development,
QML is increasingly being applied to real-world problems in
fields like drug discovery, molecular design, and bioinformatics.
These use cases suggest that quantum systems are not just
faster—they may offer qualitatively different ways of
understanding data.

4 Why this matters for ecology?

Many biological systems pose exactly the kinds of challenges
quantum computing is suited to address: low-variation datasets,
weak signals, and nonlinear interactions. In molecular ecology, these
issues are common. Consider mitochondrial DNA from a species
with global dispersal, or genome-wide SNPs from recently diverged
populations. Classical analyses may detect no structure, but that
doesn’t mean none exists. Quantum computing could shift this
paradigm. For example, quantum feature mapping may embed
genetic data into a space where structure becomes linearly
separable, even if it appears undifferentiated in PCA. Quantum
classifiers, like QSVMs, could be used to assign individuals to weakly
distinct populations, even in cases of high admixture or recent
introduction events. In systems with reticulate evolution, cryptic
speciation, or asymmetric gene flow, quantum models may better
capture the underlying complexity.

Beyond classification, quantum optimization algorithms could
enhance model selection and parameter tuning. In seascape or
landscape genetics, where researchers often model genetic
differentiation as a function of multiple, correlated environmental
variables, quantum optimization may more efficiently explore the
solution space—avoiding overfitting and identifying the most
explanatory variables. These tools are not just theoretical.
Quantum algorithms have already been used in genome
assembly, drug target prediction, and peptide design (Boev et al.,
2021; Dhoriyani et al., 2025; Vakili et al., 2025). As population
genetics grapples with ever-larger datasets and increasingly subtle
patterns, the adoption of quantum tools is a logical extension.
Quantum approaches will likely not replace classical methods
outright, but they may provide complementary insight, especially
in systems where traditional approaches return ambiguity. For
population genetics, quantum computing offers not just more
power, but a fundamentally new lens through which to view
biological complexity.

It should be noted that many quantummachine learning models
are quantum analogs of classical AI methods, such as QSVMs
derived from support vector machines, or quantum neural
networks adapted from deep learning. As such, progress in
quantum approaches is often informed by advances in classical
AI, underscoring the need for cross-training in both fields.
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Developing robust hybrid models will require expertise in both
quantum algorithms and traditional machine learning frameworks.

5 A conceptual framework
and roadmap

To realize the potential of quantum computing in population
genetics, a coherent pipeline is essential—one that bridges classical
genetic data and quantum machine learning models. Figure 1
outlines a six-step conceptual framework designed to help
researchers integrate quantum methods into population
structure analysis.

5.1 Input preparation

This first step begins with standard classical processing: filtering
SNPs, aligning sequences, removing low-quality data, and
formatting inputs using tools such as PLINK, VCFtools, or
BCFtools. Clean, structured data is essential for downstream
encoding and modeling.

5.2 Data encoding

Genotype or haplotype information must be converted into a
quantum-readable format. Techniques like angle encoding
(mapping genotypes to rotational angles on qubits) or amplitude
encoding (embedding entire genotype vectors into quantum state
amplitudes) translate biological data into a format compatible with
quantum circuits.

5.3 Quantum feature mapping

Encoded data is embedded into a high-dimensional Hilbert
space using parameterized quantum circuits. This transformation
allows weak or nonlinear patterns, such as subtle gene flow or cryptic
structure, to become more separable, much like kernel methods in
classical ML but with exponentially expanded feature space.

5.4 Quantum modeling

With data now embedded, quantum machine learning
algorithms (e.g., quantum support vector machines, quantum
k-means, quantum neural networks) are applied to detect
population differentiation, cluster individuals, or identify outliers.
These models operate in the quantum feature space and may
outperform classical approaches in noisy or weakly
structured datasets.

5.5 Measurement and interpretation

Quantum measurement collapses the qubit state into classical
outcomes, typically as bitstrings or probability distributions. These
outputs are interpreted as cluster memberships, structure
probabilities, or other biologically relevant predictions.

5.6 Classical post-processing

Finally, results are validated, visualized, and interpreted using
traditional statistical and genetic tools (e.g., STRUCTURE,

FIGURE 1
Conceptual pipeline for integrating quantum computing into population genetic analysis. Abbreviations: PQC: Parameterized quantum circuits,
QSVM: Quantum Support Vector Machines, QNN: Quantum Neural Networks, DAPC: Discriminant Analysis of Principal Components, AMOVA: Analysis
of Molecular Variance.
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ADMIXTURE, AMOVA, or DAPC). This hybrid approach
leverages the strengths of both quantum and classical systems.

Together, these steps provide a flexible but actionable roadmap
for bringing quantum computing into real-world population
genetic research.

6 Caveats

The potentially enormous gains in data analysis of population-
level genetic data are contingent on several hardware and
algorithmic limitations. Current quantum devices (termed Noisy
Intermediate-Scale Quantum or ‘NISQ’ systems), have relatively few
qubits (often fewer than 100 usable ones) and are prone to error and
decoherence (Lau et al., 2022; Chen et al., 2023). These constraints
limit the size and depth of quantum circuits, which in turn restricts
the scale of biological datasets that can be analyzed directly on
hardware. Moreover, data encoding itself presents a bottleneck in
the proposed pipeline. While angle encoding is conceptually
straightforward and compatible with small-scale data (e.g.,
mtDNA haplotypes or select SNP panels), amplitude
encoding – which enables exponentially efficient processing,
requires complex normalization and may be impractical on
current devices. Encoding hundreds or thousands of SNPs across
many individuals is still computationally expensive, even on
simulated backends.

Given the early stage of development, many proposed quantum
applications in biology remain speculative. Empirical
benchmarking, especially using small, tractable datasets such as
mtDNA haplotypes, SNP panels, or synthetic admixed
population, is critical for validating the feasibility and value of
QML in real-world scenarios. Such preliminary studies can
generate essential performance metrics, guide algorithm
refinement, and justify further investment in scaling up
applications. Finally, one significant challenge is the fact that
many quantum algorithms lack biological grounding, meaning
that they were not designed with population genetics principles
in mind, and few benchmarks exist to compare quantum outputs to
traditional methods like DAPC or ADMIXTURE. As such,
interpretability and validation will remain critical challenges, and
early applications will likely depend on hybrid quantum-classical
workflows that combine quantum pattern recognition with classical
biological inference.

In short, quantum tools may offer qualitatively different
insights, especially in difficult datasets where classical tools
struggle. But these gains must be evaluated against current
limitations in scale, stability and interpretability–challenges that
are likely to be overcome only through cross-disciplinary
innovation and algorithm refinement.

7 Conclusion and a call to action

Quantum computing is not a distant future, it is already
reshaping fields from chemistry to bioinformatics. For population
genetics and molecular ecology, the moment is ripe to explore how
quantum tools might uncover the hidden structure that classical
methods miss. This transformation will not happen passively

though. It will require intentional collaboration between quantum
physicists, data scientists, and biologists. Pilot studies on small
datasets for e.g., mitochondrial haplotypes, reduced SNP panels,
or simulated admixed populations, can provide early proof-of-
concept and establish benchmarks for quantum vs. classical
performance. Data challenges, benchmarking competitions, and
shared datasets can accelerate this process, especially when
supported by institutions that span both fields. Equally important
is education: graduate programs and workshops should begin
introducing ecologists to quantum concepts, particularly in
encoding, modeling, and quantum-enhanced optimization.
National and international funding agencies are already
prioritizing quantum innovation, including through
interdisciplinary research initiatives. Molecular ecologists should
seize this opportunity to lead, not follow, in applying quantum tools
to biological questions. The tools are available. The theory is sound.
What’s needed now is action. By embracing quantum methods
today, we can reimagine how we study population structure,
biodiversity, and evolution tomorrow.
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