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ABSTRACT

Shell-boring polychaetes of the genus Polydora pose a significant threat to oyster aquaculture worldwide, yet
little is known about their seasonal dynamics in tidally restricted estuaries. This study investigates the preva-
lence, intensity, and environmental covariates of Polydora websteri infestation in wild eastern oysters (Crassostrea
virginica) over a 12-month period in the Herring River estuary (Cape Cod, Massachusetts), a system slated for
tidal restoration. Oysters were collected monthly, and worms identified morphologically and by COI barcoding.
Infestations were observed year-round, with prevalence and intensity lowest in late summer and peaking in fall-
winter. Gravid females were only observed from April through August, indicating a seasonal reproductive
window. The seasonal peak in visible infestation and pathology in colder months is therefore consistent with a
lag between summer recruitment and subsequent shell damage. Using a Gaussian generalized linear model as a
descriptive correlational tool, we observed a negative association between temperature and monthly mean in-
tensity at this site and year; salinity and pH showed no detectable association. These associations are interpreted
within the seasonal/lag context rather than as casual drivers. Overall, this work provides baseline data on
seasonal Polydora dynamics in the Herring River estuary that will be essential for future, post-restoration

assessments.

1. Introduction

The shellfish aquaculture industry is a cornerstone of many coastal
economies, providing a sustainable seafood source and contributing
over US$50 billion to global markets (Azra et al., 2021). In the United
States alone, shellfish farming generates more than $250 million
annually and supports tens of thousands of jobs (National Marine Fish-
eries Service, 2022). However, oyster production faces multiple chal-
lenges, including environmental stressors and disease outbreaks, both of
which can interact synergistically to exacerbate mortality rates and
reduce yields (Rowley et al., 2014; Pernet et al., 2016). In recent years,
heavy infestations of shell-boring polychaete worms of the genus Poly-
dora have been reported in various regions worldwide (Cole et al., 2020;
Diez et al., 2022; Sato-Okoshi et al., 2023; Lezzi and Mazziotti, 2024;
Davinack et al., 2024; Stadnichenko et al., 2024; Mikac et al., 2025).
These worms burrow into the shells of oysters, forming unsightly blisters
that reduce commercial value and increase mortality risks, largely due to
the fact that oysters must divert energy from growth to shell repair
(David, 2021). In the United States, three Polydora species are
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recognized as the primary borers of cultivated shellfish. Polydora web-
steri, the most widespread species, burrows into both the eastern oyster
(Crassostrea virginica) and the Pacific oyster (Magallana gigas) (Rice
et al., 2018; Martinelli et al., 2020; Davinack et al., 2024). Polydora
neocaeca primarily infests bay scallops (Argopecten irradians) (Davinack
and Hill, 2022), while Polydora onagawaensis, recently discovered on
oyster farms in Maine, represents an emerging concern for aquaculture
(Silverbrand et al., 2021).

In the northeastern United States, the Herring River Estuary in
Wellfleet, Massachusetts, is home to expansive shellfish beds which have
been severely impacted by tidal restriction following the construction of
a dike over a century ago (Smith et al., 2020; Naseri et al., 2025). This
restriction has led to poor water quality, including elevated fecal coli-
form levels, resulting in the closure of oyster beds for human con-
sumption (Portnoy and Allen, 2006). The dike is currently in the process
of being removed with the hope that tidal restoration will improve water
quality and oyster beds reopened for harvesting and cultivation. How-
ever, even if the dike were removed and water quality improved, a
recent study by Davinack et al. (2024) found 100 % prevalence of
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P. websteri in this area, with a mean intensity exceeding 20 worms per
oyster. While this particular study was conducted in May and so was
representative of only a single time point, concerns remain that persis-
tent Polydora infestations could render these oysters commercially
inviable, and that tidal restoration alone may not be sufficient to miti-
gate the problem.

In this study, we analyzed seasonal fluctuations in Polydora in-
festations across a 12-month period and examined associations with
temperature, salinity, and pH. The primary objectives were therefore to
(1) assess the seasonal persistence of Polydora infestation in wild oysters
across an annual cycle and (2) identify the environmental factors most
strongly associated with changes in infestation intensity.

2. Study site

The study was conducted in the Herring River estuary, a 1,100 acre-
coastal wetland system in Wellfleet, Massachusetts, that has been tidally
restricted since the early 20th century due to the installation of a dike at
its mouth. This restriction has significantly altered estuarine hydrology,
resulting in reduced tidal exchange, prolonged water retention, lower
dissolved oxygen, and elevated fecal coliform concentrations (ENSR
Corporation & Wilkinson Ecological Design, 2007; Smith et al., 2020;
Naseri et al., 2025). These conditions have also contributed to changes
in sediment composition, vegetation structure, and nutrient cycling —
factors that may influence both oyster health and parasite recruitment
dynamics. Importantly, unlike most shellfish aquaculture sites on Cape
Cod, the Herring River estuary has not been used for aquaculture due to
its chronically impaired water quality (Smith et al., 2020). As a result, it
offers a rare opportunity to study Polydora infestation in a wild oyster
population inhabiting a hydrologically degraded system. A previous
study found that oysters from this tidally restricted site had significantly
higher mean infestation intensity and prevalence than oysters from
nearby active farms in more open systems, despite being less than 10 km
apart (Davinack et al., 2024). Although other “trapped estuaries” exist in
New England, the Herring River stands out due to the severity and
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presence of its tidal restriction, the absence of aquaculture, and its
exceptionally high infestation levels. Moreover, the system is undergo-
ing a large-scale restoration project that will reintroduce full tidal flow
to more than 890 acres of salt marsh and estuarine habitat, making it one
of the largest efforts of its kind in the region and an ideal setting for
establishing ecological baselines prior to hydrologic restoration.

3. Materials and methods
3.1. Oyster sampling, worm extraction & identification

Approximately 20 to 35 eastern oysters (Crassostrea virginica) were
hand-collected monthly from May 2024 to April 2025. (Fig. 1). These
oysters were located in a permanently submerged section of the diked
river, approximately 129 m downstream of the Chequessett Neck dike.
To characterize environmental conditions across the sampling period,
we used water quality data from the Cape Cod Cooperative Extension’s
remote sensor in Wellfleet Harbor (Table 1), located ~2 km from our site
and hydrologically connected to the upper Herring River. These

Table 1

Summary of environmental data collected across sampling months in the present
study. CCCE Data represent parameters recorded at high temporal resolution via
a remote sensor deployed in Wellfleet Harbor by the Cape Cod Cooperative
Extension. In-situ Data represent point measurements recorded once per week
using a handheld multiparameter water quality meter during both oyster sam-
pling and non-sampling week.

Environmental CCCE Data In-Situ Data

Variable (Mean =+ SD, Range) (Mean =+ SD, Range)

Temperature (°C) 16.89 + 8.39 (—1.67 to 15.45 + 9.10 (—2.0 to
27.98) 25.5)

Salinity (PSU) 31.52 + 1.06 (27.6 to 27.75 + 5.50 (15.5 to
33.35) 36.0)

pH 8.06 + 0.10 (7.80 to 8.33) 7.90 + 0.68 (6.8 to 8.31)

Cape Cod Bay

Fig. 1. Map of sampling locality for Crassostrea virginica.
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continuous records (temperature, salinity, pH) were used in tandem
with weekly in situ spot measurements collected using a Hanna HI 98194
multiparameter meter.

Oysters were shucked, photographed, and tagged. Shells were care-
fully cracked using pliers, and individual worms were identified to the
species level using published morphological descriptions of common
shell-boring polychaetes from the northeastern US (Rice et al. 2018;
Davinack and Hill 2022; Davinack et al. 2024). Worms that could not be
definitively identified morphologically were genetically barcoded using
the cytochrome c oxidase I (COI) mitochondrial marker. All DNA
extraction, polymerase chain reaction and Sanger sequencing protocols
(including primers and conditions) are outlined in Davinack et al.
(2024). Returned sequences were compared to the GenBank database
using the BLASTn tool to determine the closest match via percent
identity. All sequences generated in this study were submitted to the
GenBank database (Accession numbers: PV472287 — PV472291).

3.2. Assessment of parasite load and mud-blister pathology

Parasite load was assessed using two metrics: prevalence (%) and
intensity. Prevalence was calculated as a percentage by dividing the
number of infected oysters by the total number of oysters sampled per
month. Intensity was defined as the number of Polydora worms per
infected oyster, and mean intensity was calculated for each sampling
month using only infected individuals. To determine whether there was
a significant difference in mean intensity across months sampled, a
Kruskal-Wallis H test was performed followed by a Dunn’s post-hoc test
to determine where significance, if any, lay.

To assess the severity of Polydora infestation in oysters, a semi-
quantitative pathology scoring system was employed, ranking in-
dividuals on a scale from O to 4 based on the percentage of the inner shell
surface covered by mud blisters. Oysters with no visible blisters were
assigned a score of 0, while those with increasing degrees of infestation
were categorized into four progressive stages: 1 (1-25 % coverage), 2
(26-50 % coverage), 3 (51-75 % coverage), and 4 (76-100 % coverage).
This surface-level damage scoring reflects external pathology only and
does not capture overlapping or deeper burrows. However, a previous
study demonstrated a statistically significant correlation between mud
blister surface area and actual worm burden, providing support for the
use of visible surface pathology as a reliable proxy for infestation in-
tensity (Davinack et al. 2024). To ensure accuracy and consistency in
scoring, high-resolution images of the inner shell surfaces were taken
under standardized lighting conditions. Image analysis was performed
using ImageJ. The total shell area and the portion covered by blisters
were quantified through threshold-based segmentation, allowing for an
objective determination of infestation severity. Each oyster’s pathology
score was then assigned based on the calculated proportion of blister
coverage. To assess whether the severity of mud-blisters varied across
months, a chi-square test of independence was conducted to determine
whether the distribution of pathology scores differed significantly
among months. This analysis tested the null hypothesis that pathology
scores were independent of sampling month, with significant results
indicating temporal variation in infestation severity.

To visualize associations between environmental covariates and
monthly mean intensity, we fit a generalized linear model (Gaussian,
identity link). Analyses are correlational (single site/year) and are
interpreted as such rather than as a causal inference. Because the
response variable—mean intensity per oyster per month—is continuous
rather than discrete counts, the Gaussian distribution was deemed more
appropriate than a Poisson model. Predictor variables included salinity,
temperature, pH, and mean oyster size, and an intercept term was
included in the model. Prior to model fitting, multicollinearity among
predictor variables was assessed using Variance Inflation Factors (VIFs),
with a threshold of VIF > 5 indicating potential collinearity issues.
Model performance and goodness-of-fit were evaluated using residual
deviance, log-likelihood, and visual inspection of residual plots. To
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assess the potential influence of sampling bias, we also ran a secondary
GLM excluding August data, as oysters collected during that month were
notably smaller due to tidal access limitations. All statistical tests were
performed using the statsmodels package (Seabold and Perktold, 2010)
in Python ver. 3.

4. Results

Morphological and molecular characterization of extracted worms
confirmed that Polydora websteri was the only shell-boring polychaete
infecting oysters in the Herring River estuary. All barcoded specimens
had 99.37 - 100 % identity matches to P. websteri. Oysters were infected
throughout the 12-month study period; however, clear seasonal differ-
ences in prevalence were observed, with the highest prevalence recor-
ded in the fall and winter months, and the lowest during late spring and
summer (Fig. 2). The highest prevalence (100 % infection) was recorded
in September, October, December and January while the lowest preva-
lence (17 %) was recorded in August. Mean intensity followed a similar
seasonal trend, with significantly higher infestation levels in fall and
winter (Kruskal-Wallis H = 106.98, p < 0.05; Fig. 3). Peak mean worm
intensities occurred in November (26.3 + 13.5), December (22.2 +
10.9), and January (28.9 + 11.7), whereas the lowest intensity was
recorded in August (0.8 £+ 2.1).

A chi-square test of independence revealed that the distribution of
mud-blister pathology scores differed significantly across months (x> =
80.26, df = 33, p < 0.05), indicating seasonal variation in infestation
severity. Higher proportions of severe pathology scores (3-4) were
observed during the fall and winter months, suggesting a temporal shift
toward more intense infestations during cooler periods (Fig. 4).

A Gaussian Generalized Linear Model (GLM) found that temperature
was a significant negative predictor of infestation intensity (f = -0.934,
p = 0.040) (Table 2). To test whether this relationship was influenced by
the sampling bias in August — when only small oysters were collected —
we re-ran the model excluding the August data. The temperature-
intensity relationship remained significant (p = —0.381, p = 0.048),
indicating the trend is robust to this sampling artifact (Table S1). Oyster
size showed a positive but non-significant effect (3 = 0.724, p = 0.461),
suggesting a trend toward larger oysters harboring more worms. Neither
salinity nor pH were significant predictors (p > 0.2). Model predictions
reflected this inverse relationship between temperature and infestation
intensity (Fig. 5).

During field observations, gravid female worms first appeared in
April, with egg capsules and larval emergence occurring through the
spring and summer months. Egg capsules were not connected to each
other in a continuous string within the worm’s burrows. The primary
developmental mode observed in P. websteri was adelphophagy, with
individuals producing 40-80 nurse eggs per capsule. No gravid females,
larvae, or egg capsules were observed after August.

5. Discussion

This study provides new insights into the seasonal dynamics of Pol-
ydora websteri infestation in wild eastern oysters from the northeastern
United States. A key feature of this work is its focus on a tidally restricted
estuary in the Herring River system of Cape Cod, where limited tidal
exchange creates stable, localized water quality conditions that offer a
unique opportunity to examine infestation patterns over time. The
findings serve as critical baseline data on the seasonal prevalence and
intensity of P. websteri infestation under current, restricted conditions.
This data will be essential for assessing ecological change following the
planned removal of the Herring River dike in Wellfleet, and will directly
inform future management decisions regarding the restoration and
commercial viability of local oyster beds.
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Fig. 2. Monthly prevalence of Polydora websteri infestation in eastern oysters collected from the Herring River Estuary between May 2024 and April 2025.
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Fig. 3. Boxplot showing intensity of Polydora websteri infestation in eastern oysters collected from the Herring River Estuary between May 2024 and April 2025.

5.1. Seasonal fluctuation in Polydora websteri infestation

Worms were present throughout the year, with the highest preva-
lence and intensities recorded in the fall and winter months when
temperatures ranged from —2.1 °C to 14.4 °C. Parasite load in August
was notably low. This likely reflects a sampling artifact, as the oysters
collected in August were considerably smaller (mean shell length: 4.4
cm) compared to other months. Given that smaller oysters tend to host
fewer Polydora worms, the lower observed intensity during this period
may be due to size-related differences in infestation risk rather than a
true seasonal decline. Other studies have reported contrasting seasonal
patterns in P. websteri infestation, though these cannot be directly
compared due to differences in site conditions, sampling design, and
environmental regimes. For instance, Cole et al. (2020) found that in-
festations in farmed eastern oysters in the northern Gulf of Mexico
peaked during summer, with larvae present year-round. In contrast,
Martinelli et al. (2024) observed peak infestation in Pacific oysters on

the U.S. West Coast during winter months, aligning more closely with
the seasonal pattern observed in our study. While these patterns may
reflect regional environmental differences, such as temperature regimes
or hydrology, our data are limited to a single site and year, and cannot
resolve these broader drivers. Instead, our findings support the inter-
pretation that infestation intensity can remain high during fall and
winter in the absence of active reproduction, possibly due to a lag be-
tween larval recruitment and the development of visible infestation.
This is consistent with previous work suggesting that several months
may pass between larval settlement and the appearance of mud blisters
(Zottoli and Carriker, 1974; David and Simon, 2014). Future studies
incorporating multi-site or multi-year comparisons will be essential for
evaluating the role of regional environmental drivers in shaping parasite
population dynamics.

Patterns of pathology followed a similar seasonal trend, with more
severe mud-blisters appearing in the fall and winter months. Our chi-
square analysis confirmed that the distribution of pathology scores
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Table 2

Gaussian Generalized Linear Model (GLM) results assessing the effect of temperature, salinity, pH, and oyster size on Polydora websteri infestation intensity.

Predictor Coefficient (B) Std. Error z-value p-value 95 % CI (Lower) 95 % CI (Upper)
Intercept 20.5941 17.839 1.155 0.291 ~20.112 61.300
Salinity 0.125 0.162 0.774 0.465 -0.264 0.515
Temperature —0.934 0.382 —2.448 0.040 —1.822 —0.045
pH -2.633 1.566 -1.681 0.129 -6.231 0.965
Oyster size 0.724 0.927 0.781 0.461 -1.060 2.509
both worm intensity and pathology scores peaked during fall and winter,
X OfF Snesa manihly maan this pattern may result from larvae settling in the warmer months and
—_— i
30 95% CI only becoming visibly established weeks or months later, as has been
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Fig. 5. Observed monthly mean intensity of Polydora websteri infestations in

Crassostrea virginica (black points; point size scaled by monthly sample size)

plotted against mean monthly temperature, with fitted generalized linear model
(line) and 95% confidence interval (shaded area).

varied significantly by month, with a greater proportion of oysters
exhibiting high-severity scores (3-4) during colder periods. This sup-
ports the interpretation that visible infestation reflects a biological lag
between earlier larval recruitment and later shell colonization. Although

found in other studies (Zottoli and Carriker, 1974; David and Simon,
2014). Our findings support the notion that Polydora infestations reflect
a continuum of interaction intensity, ranging from minimally damaging
to overtly parasitic. While lower-grade infestations (Grades 1-2) may
appear low-grade and inflict little overt harm, the boring activity itself
incurs energetic costs to the host by triggering shell repair and main-
tenance responses (David 2021). Even in the absence of gross pathology,
this diversion of resources establishes a fundamentally antagonistic
interaction. Higher pathology grades (3-4), on the other hand, are more
likely to compromise shell integrity and reduce host condition and
marketability. As reviewed by David (2021), such infestations have been
linked to increased metabolic demands, reduced growth, and impaired
reproduction in bivalves. Our application of a semi-quantitative pa-
thology scale allows for a more nuanced evaluation of when Polydora
crosses from a low-cost association into a clearly parasitic relationship.
While our surface-level damage scale does not account for deeper or
overlapping burrows, prior work has shown that visible pathology can
serve as a meaningful proxy for worm intensity. In a related study,
Davinack et al. (2024) demonstrated a significant positive correlation
between the percent shell area covered by mud blisters and actual worm
burden in Crassostrea virginica. This supports the biological relevance of
our approach, even if it underestimates hidden damage. However, given
that structural impacts such as shell weakening or adductor muscle
detachment may occur beneath the nacreous layer, future work
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incorporating histological or 3D imaging would provide a more com-
plete picture of infestation severity and its consequences.

The Generalized Linear Model (GLM) in our study identified tem-
perature as the strongest environmental correlate of infestation in-
tensity. This contrasts with Cole et al. (2020), who found that salinity
fluctuations and dissolved oxygen levels played a more prominent role
in infestation patterns in the Gulf of America, where estuarine condi-
tions are warmer and more variable. Similarly, Martinelli et al. (2024)
reported a significant association between low-salinity conditions and
higher infestation levels in Pacific oysters cultured on-bottom, likely due
to increased sediment exposure and organic loading. In contrast, our
study site—a tidally restricted estuary with relatively stable salinity and
pH—temperature emerged as the strongest negative correlate of in-
tensity; however, we interpret this as a consequence of the seasonal
reproductive window and a lag to visible pathology, not necessarily as
evidence that temperature is a direct driver. Additional sampling across
multiple years will be needed to support more robust predictive
modeling.

These seasonal trends likely reflect a combination of parasite
reproductive timing, host growth, and cumulative oyster mortality.
Smaller oysters collected in the summer may not have been suitable
hosts during the prior infestation window, or they may have supported
early-stage burrows that were not detectable using our surface-level
assessment. While our pathology scale provides a practical proxy for
damage, it cannot account for newly recruited or deeply embedded
worms. Future work incorporating metrics such as worm developmental
stage or burrow depth, using techniques like histology or 3D imaging,
will be essential to fully capture the dynamics of prevalence and in-
tensity over time and ensure early infestations are not overlooked.

5.2. Reproduction in Polydora websteri in the Herring River estuary

Throughout the reproductive period, P. websteri females produced
primarily adelphophagic larvae from individual egg capsules that were
connected via a discontinuous chain. In adelphophagic development,
females deposit egg capsules in which only a subset of eggs develop into
larvae, while the remaining eggs serve as nurse eggs (Rice and Rice,
2009). This often leads to sibling competition, resulting in hatchlings of
varying sizes (David and Simon, 2014). These differences can signifi-
cantly influence larval ecology: larger adelphophagic larvae typically
spend less time in the plankton and have reduced dispersal potential
compared to their smaller, planktotrophic counterparts, although
oceanographic conditions may also influence final settlement patterns
(David et al., 2014; David, 2021). A previous study by Davinack et al.
(2024) confirmed the presence of planktotrophic broods from the same
site, and genetic barcoding ruled out the presence of cryptic species.
Thus, the P. websteri population in Cape Cod is poecilogonous, exhibiting
multiple larval developmental modes. This contrasts with populations
from China and Brazil, where P. websteri is known to produce only
planktotrophic larvae (Ye et al., 2017; Barros et al., 2017). Interestingly,
populations producing both planktotrophic and adelphophagic larvae
have also been found in Maine, USA (Tomasetti, 2024), Virginia, USA
(Haigler, 1969) and South Africa (Simon, 2015).

5.3. Implications for oyster harvesting and management

Polydora websteri infestations were present year-round, with peak
intensities and pathology in colder months. This seasonal pattern is
important to consider as tidal restoration of the Herring River proceeds
and oyster beds may reopen. Tidal restriction has likely favored
P. websteri through organic accumulation and reduced flushing. Rein-
troducing tidal flow may alleviate some of these conditions, yet our
findings suggest that parasite pressure will persist, particularly given
this species’ winter activity when other estuarine parasites typically
decline. If harvesting resumes, mitigation strategies may help reduce
impacts. Off-bottom culture systems can lower exposure to sediments
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(Clements et al., 2017; Martinelli et al., 2024), although complete
control remains elusive (Morse et al., 2015). Harvesting during spring
and early summer, when intensities are lower, may also help avoid the
peak damage of overwintering infestations. Routine monitoring of larval
activity and settlement after restoration will be essential to track
changes and inform adaptive management.

Overall, the success of oyster restoration in the Herring River will
depend not only on improved water quality following tidal restoration,
but also on a proactive approach to parasite management that in-
corporates local biological dynamics. These observations generate test-
able hypotheses for future work, but management implications await
multi-year, post-restoration data.
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